• Excrubulent@slrpnk.net
    link
    fedilink
    English
    arrow-up
    86
    arrow-down
    3
    ·
    edit-2
    5 months ago

    The problems with nuclear power aren’t meltdowns, but the facts that it often takes decades just to construct a new plant, it creates an enormous carbon footprint before you get it running, it has an enormously resource-intensive fuel production process, it contributes to nuclear proliferation, it creates indefinitely harmful waste, and even if we get past all of that and do expand it, that’s just going to deplete remaining fuel sources faster, of which we only have so many decades left.

    It’s not a good long term solution. I agree we should keep working plants running, but we can’t do that forever, and we still need renewable alternatives - wind, hydro and solar.

    And it wasn’t some nebulous group of NIMBYs that worked against nuclear power, it was the fossil fuel lobby. I don’t know why people keep jumping to cultural explanations for what is clearly a structural issue. The problem isn’t some public perception issue, but political will, and that tends to be bought by the fossil fuel lobby.

    Also there is good science on why we actually can switch to entirely renewables: https://www.theguardian.com/environment/2023/jan/23/no-miracles-needed-prof-mark-jacobson-on-how-wind-sun-and-water-can-power-the-world

    • Liz@midwest.social
      link
      fedilink
      English
      arrow-up
      21
      arrow-down
      1
      ·
      5 months ago

      Re: Remaining fuel.

      If we built breeder reactors we could use the spent waste fuel to power the entire US for 1000 years. That runs into plutonium existence problems, but it’s a political problem, not a resource problem.

      However, I still agree with what you’ve said. We should limit our nuclear footprint to key isotope production, but we really shouldn’t be doing that until we’ve gone full carbon neutral.

      • Excrubulent@slrpnk.net
        link
        fedilink
        English
        arrow-up
        1
        ·
        edit-2
        5 months ago

        The important part here is “if we built”. If we built a net-gain fusion reactor our energy problems would be solved too, but we’re not doing that.

        There are significant problems with breeder reactors and development has largely stopped on them.

        The problem here is the AM/FM distinction: Actual Machines vs Fucking Magic.

        Fucking Magic is great if you’re writing scifi, or trying to sell snake oil to investors. The Hyperloop and FSD are examples of Fucking Magic. Sure, they could, in theory, exist, but they don’t, and we don’t know how long they would take or even if they make sense in the long term.

        There’s nothing wrong with working on new technologies that may as well be Fucking Magic until they do become viable.

        However, if you are making plans for how to proceed with your policy goals, you need Actual Machines. Actual Machines can’t do miracles and fix all of our problems overnight like Fucking Magic can, but they have the benefit of existing. We know their actual benefits and their actual drawbacks. We know that they won’t present some brand new problem that makes them impossible to work with, because they are mature. Trains and bicycles are Actual Machines. Wind, solar and hydro power are Actual Machines.

        Cars are also Actual Machines, and thanks to over a century of maturity, we can confidently say that they are not sustainable at their current scale. Nuclear fission is similar.

        We don’t know if Fucking Magic will make the transition to an Actual Machine, and if it does, whether it will turn out to be viable.

        If breeder reactors are going to become a technology we can rely on to solve our nuclear fuel and waste issues, then they need to make the transition from Fucking Magic to Actual Machines to finally being viable, and that could take decades or more of further research, and yet more decades to actually build the things. Sure, that could come in time to extend our nuclear fuel reserves before they run out in around a century, but it might not. We just don’t know. It certainly won’t come in time to make a difference to climate change.

    • gravitas_deficiency@sh.itjust.works
      link
      fedilink
      English
      arrow-up
      5
      ·
      edit-2
      5 months ago

      While those are all fair points, it’s also important to note that Gen IV reactor technology has projected generation efficiencies of very roughly 100-300x the energy yield from an identical mass of fissile material when compared to Gen II and Gen III reactors. I dare say that would change the efficiency equation rather significantly if those numbers pan out in the implementation stage.