No, the average user will never know the difference. I couldn’t tell you exactly what the current performance impact is for hardware encryption, but it’s likely around 1-4% depending on the platform (I use LUKS under Linux).
For gamers, it’s likely a 1-5 FPS loss, depending on your hardware, which is negligible in my experience. I play mostly first and third person shooter-style games at 1440p/120hz, targeting 60-90 FPS, and there’s no noticeable impact (Ryzen 5600 / RX 6800XT).
Maybe, but not every frame while you’re playing. No game is loading gigs of data every frame. That would be the only way most encryption algorithms would slow you down.
I highly doubt it… would love to see some hard data on that. Most algorithms used for disk encryption these days are already faster than RAM, and most games are not reading gigabytes/sec from the disk every frame during gameplay for this to ever matter.
No, the average user will never know the difference. I couldn’t tell you exactly what the current performance impact is for hardware encryption, but it’s likely around 1-4% depending on the platform (I use LUKS under Linux).
For gamers, it’s likely a 1-5 FPS loss, depending on your hardware, which is negligible in my experience. I play mostly first and third person shooter-style games at 1440p/120hz, targeting 60-90 FPS, and there’s no noticeable impact (Ryzen 5600 / RX 6800XT).
If it has to go to disk for immediate loading of assets while playing a video game you’re losing more than 1-5 fps
Maybe, but not every frame while you’re playing. No game is loading gigs of data every frame. That would be the only way most encryption algorithms would slow you down.
You’re more likely going to get stuttering or asset streaming issues which are going to have more impact than losing a few fps.
I highly doubt it… would love to see some hard data on that. Most algorithms used for disk encryption these days are already faster than RAM, and most games are not reading gigabytes/sec from the disk every frame during gameplay for this to ever matter.